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INSTRUCTIONS:

a) Answer ANY FOUR questions

b) Make clear properly labeled sketches,
¢) Draw fully labeled FBDs w
d) For calculations, you are a

graphs or diagrams where relevant or required
here required. See Notations at the end.

dvised to first state the steps you would use to solve the problem

.................................................................................

Question 1

(a) State the general ODE for analyzing the vibration of a forced damped SDOF system. What type
of differential equation is it? Use Lecture notations m, k, ¢ and f{t)

(b) Explain the steps for solving the equation. ~

(c) A free damped mechanical vibration system has the following elements: mass = 4 kg, k = 1
kN/m, ¢ = 40 N-sec/m. Determine (i) damping coefficient, (i1) natural frequency of de.lmped
oscillz;tion, (iii) logarithmic decrement and (iv) number of cycles after which the original
amplitude is reduced to 20%.

Question 2

For the mechanical system shown in Figure 1, the uniform rigid bar has mass m and is pinned at O.
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is 1 i ilibrium and that all angles remg;
hat in the horizontal position the system 18 111 static equilib ain
Assume that 1n the
small. Do the following:

a) Draw the FBDs '

b) Find the equations of motion _ fthe pa
D ine the damping ratio and natural frequency 1 terms. 0 i ] f c

¢) Determine the damp 250 N/m, calculate the natural frequency

_ k=
=1.50kg, 0 =45 cm, ¢ = 0.125 N/(n/s), ' _
A and damping ratio {. Deduce that the system is under

rameters m, ¢, k, and 0.

w, , the damped frequency o,

damped.

Question 3
the

. ' es
For the system shown in Figure 2, the disk of mass m rolls without slip and x measur
displacement of the disk from the unstretched position of the spring.

a) Derive the equations of motion; . ; .
b) If the system is underdamped, what is the frequency of the free vibrations of this system in

terms of the parameters k, ¢, and m;
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- Figure 2

Question 4

(a) Explain the energy method for deriving the ODE for the case of SDOF free undamped vibration.
(b) Find the value of £, such that the mass-spring system described by the equation below is

undergoing resonance: 8u" + k u = 5sin 6¢
(¢) Solve the following initial value problem: 34" + 24w’ + 48u = 0, u(0) = -5, u’(0) = 6. First

determine whether the system is under-, over-, or critically damped

Question 5

(a) What is a two degree of freedom (2DOF) vibrating system?
(b) Write the general form of ODE for a forced damped 2DOF system in matrix form and compare

it with the corresponding case of SDOF system
(c) Draw the FBD for the free vibration of a 2DOF undamped spring-mass system with masses m;,

my, and spring constants ki, k2, k3 (where k is spring stiffness for the middle spring).
(d) Show that the EOM for the system in (c) can be written in matrix form:
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{m] 0 ]{XI } +[k' th =k =] [0
0 m, 552 - kZ k2 + k3 xz} = {O}
Question 6

Assume the solution for 5(d) to be of the form:

xl al .
X= = sinwt
x2 a2

Let m; =m, mz =2m, and setk; =k =ks =k.

(a) Derive the characteristic equation for the problem
(b) Solve for the eigenvalues, w;, i =1, 2.
(c) Sketch the mode shapes and compare their features

Notations:

FBD = free body diagram, DOF = degree of freedom, EOM = equation of motion

Reference on Solutions of free damped SDOF systems

u(t) = C1c0s w,t + C281N @ol yndamped

u(t) =Ce™ +Cye™

overdamped
, -
u(t) = Cie "+ Cyte” qitically damped

- “_, .
u(t) = C e*'cos put+ Cre”'sin ut underdamped

Page 3 of 4



Summary: the Effects of Damping on an U nforced Mass-Spring Systen,

ino free vibration (i.e. without a
Consider a mass-spring system undergoing free vibration (1
forcing function) described by the equation:

> U.
mu"+yu'+ku=0, m>0, k>0

. . ng
The behavior of the system is determined by the magnitude of the damping
coetficient y relative to 7 and .

I. Undamped system (when y=0)

Displacement: u(®) = Cycoswyt + Cysinawyt

. . /"
Oscillation: Yes, periodic (at natural frequency @, ﬂ/; )

[ 2 2
Notes: Steady oscillation with constant amplitudeR = C] + Cz ;

2. Underdamped system (when 0 < y* < dmk)

Displacement: u(f) = C,e*'cos pt+ Cye*'sin Ut

Oscillation: Yes, quasi-periodic (at quasi-frequency y)
Notes: Exponentially-decaying oscillation

3. Critically Damped system (when y* = 4mk)

Displacement: #(f) = Cye" + Cyte

Oscillation: No

4. Overdamped system (when V' > 4k

"t ryt
Displacement: #(f)=Ce" +C,e

Oscillation: No
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Critical damping

e

Damped free vibration of SDOEF system

Define the critical damping coefficient c. as that Y

alue of c that makes the
radical equal to zero,

c.=2m £=2ma),,
* Define the damping factor as:

c c
é =—=
c. 2mo,

Introducing the above equation into

* We find: 5,= _g”i\/g“:—l\m

s \ Jon
* Then the solution can be written as:
f-;+,j::-1 \_@n, ['-:-.._, e W\wﬂr

x(t) = de' ST 1Bt T



Three cases of damping

 Heavy damping when ¢ > Ce
* Critical damping c = Cc

e Light damping0<c<c

Heavy damping (c > cc or £>1)

* The roots are both real. The solution to the differential equation is:
' x(t) = Ae™ + Be™
where A and B are the constants of integration. Both s1 and s2 will be
negative because 0.>0, B >0,and #* =a’-k/m<a? . Since
s =—a+p, s =-a/—,B,wherea=2—c— and ﬂ=2L‘\/CZ—4m/{
m

m
“Thus, given any initial displacement, the mass will decay to the
equilibrium position without vibratory motion. An overdamped system

does not oscillate but rather returns to its rest position exponentially.
x(f) = Ae e o=l

Displacement (mm)
04 Loap=032, w=0
1 _219=0. ) =1
02 3. 39=—03, vy=0
2
0o

-04 = T T ‘] T T y Time (s}
<




Since ﬁ:jl\/'c:\ :

. 2m V€ —4mk is zero in this case, 51=52=-0l=-Cc/2M=-®n
:?:;ilaiiilc;r:zi.general solution is: x(f) = (4 + Br)e™®" |
ons,x=xoatt=0andx =% att=0
A=x_ and B=% +a,x, o
and the solution becomes:
x@ =[x, +(%,+ox Yl

The motion j i i ias
IS again not vibratory and decays to the equilibrium position.
x(1) )

Undamped (§ = ()

Overdamped (§ > 1)

& Critically
\\dﬂmped (&=1)

Underdamped (5 < 1)
(w, is smatller
than w,)

Light damping (0 < ¢ < c. or £<1)

« This case occurs if the damping constant c is so small that

¢ <4mk
« Then B is no longer real but pure imaginary.

2
LB=in* Wherent =—a=lAmk=c® = LI .
AU RPN p U ) I—— —-\m 4m°
« The roots of the characteristic equation are now complex conjugate:
5, =—a+io*, .'sz=—a—iw* :
with
c

a=—

m
« Hence the corresponding general solution is:
x=e“(Acos ®*t+ Bsin w*1)=Ce “ cos(w*t-¢,)

where
C? =A%+ B?and tan ¢, = B/A



Light damping (0<c<c.)

* The solution can also be expressed as:

xX(t) = e (A cosy1-¢* o 1+ Bsin 1—;20,,1)
The roots are complex. It is easily shown, using Euler’s formula that the
general solution js: x()= [C cos(a)dt—(z}n)]g‘f%’

where Cand ¢ are the constants of integration. The damped natural
frequency wq is given by o, =, \1-¢?

x(1)
3
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Light damping (0 < ¢ < c. )

* For the inijtial conditions

x(t=0)=x,
i(r=0)=1x,

* The equation
x(t) = e'@’"’(A cosy1-<¢*w t+ Bsin 1—§2cont)

can be expressed as:

—(o, 2 x. +§mx 2 2
x(t)=e ‘”(xocos 1- ot + 2 - —=siny/1-¢a ¢
d

where 4




Base excited systems: absolute motion

’ 2
In nondimensional form X, _ L+(2¢r)

Yo VA=r)+28)

The gain function for the absolyte displacement for the base- excited
system is shown in the figure.
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X + s 2.
2{ W x + Wox =

2w wYcos 2V

- n @WZ + w2¥sin @

z + ; 2, _ .
NNS:N T wls = W ¥ Wt

#(2) = Zsin(ws — ¢)
where @ 7 = YA, &)

x(2) = Xsin (wr — A)

X | w*X
@ 7= T(r ) P AREACRY)
Transmissibility:
_ 1 + (2772
N 14) (1 — #2)2 + (2772




b i

| e |
A
Transmissibility ratio, T J

5 x 1«\ .
: mxw VITEE - 1) |
V1 + 82

— 2
ﬂa@ &%NIT 1642 + (164% — 82 — 2)V'1 + 872

T(V2, §) =1, m:&mnms&mmn of the value of 7.

For r < /\I 2,7(7, {) is larger for smaller values of m Eoﬁmﬁm for » > \V/2

, u_:? {) is
smaller for smaller values of ¢£.

For all values of ¢, T(r, ¢) is less nrms one when and OE% when r > /2.
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